斯方程的三维方程

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  泊松方程或拉普拉斯方程一般是三维的偏微分方程,只有带电体的场呈“球、柱”形对称时,三维方程才退化为低维的微分方程。通过分离变量法可以得到方程的级数解。

  其中的三维δ函数代表位于的一个点源。 由基本解的定义,若对u作用拉普拉斯算子,再把结果在包含点源的任意体积内积分,那么

  由于坐标轴旋转不改变拉普拉斯方程的形式,所以基本解必然包含在那些仅与到点源距离r相关的解中。如果我们选取包含点源、半径为a的球形域作为积分域,那么根据高斯散度定理

  经过类似的推导同样可求得二维形式的解 格林函数是一种不但满足前述基本解的定义,而且在体积域V的边界S上还满足一定的边界条件的基本解。譬如,可以满足

  且u在边界S上取值为g,那么我们可以应用格林公式(是高斯散度定理的一个推论),得到

  un和Gn分别代表两个函数在边界S上的法向导数。考虑到u和G满足的条件,可将上式化简为

  所以格林函数描述了量f和g对(x,y,z)点函数值的影响。格林函数在半径为a的球面内的点上得值可以通过镜像法求得(Sommerfeld, 1949):距球心ρ的源点P的通过球面的“反射镜像”P距球心

  式中R表示距源点P的距离,R表示距镜像点P的距离。从格林函数上面的表示式可以推出泊松积分公式。设ρ、θ和φ为源点P的三个球坐标分量。此处θ按照物理学界的通用标准定义为坐标矢径与竖直轴(z轴)的夹角(与欧洲习惯相同,与美国习惯不同)。于是球面内拉普拉斯方程的解为: 这个公式的一个显见的结论是:若u是调和函数,那么u在球心处的取值为其在球面上取值的平均。于是我们可以立即得出以下结论:任意一个调和函数(只要不是常函数)的最大值必然不会在其定义域的内部点取得。

TAG标签: 拉普拉斯方程
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。